
ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 3 Issue 3 May - June 2015

International Manuscript ID : 23482001V3I3052015-91

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

Software Quality and Metrics in Software Engineering

and Quality Assurance

Tamanna

Research Scholar

Shri Venkateshwara University

Gajraula, Amroha, Uttar Pradesh

Dr. K. P. Yadav

Research Supervisor

Shri Venkateshwara University

Gajraula, Amroha, Uttar Pradesh

Abstract. The Source Code quality and understandability entirely depends on the

comments specified at appropriate locations. The current paradigms do not pro-

pose any metric or methodology that is useful for checking the source comments

quality. The proposed model and empirical parser based implementation emphas-

ize the efficient and meaningful usage of code comments in the source code re-

gardless of the language or script. In this research work, the empirical and prag-

matic evaluation of the source understandability and the escalation is done using

survey based analytics. The source code comments and understanding factors are

taken into the consideration so that the reusability of the source code can be in-

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 3 May - June 2016

International Manuscript ID : 23482001V4I3052016-101

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

creased. The key parameters for evaluation of source code include cohesion,

coupling and the type of source code. The type of source code is having the flavor

of procedural or object oriented paradigm so that any type of source code with its

inherent feature points can be analyzed and predicted.

Keywords: Source Code Understanding, Software Metrics, Software Quality,

Software Reusability.

1 Introduction

The Source Code quality and understandability entirely depends on the comments specified at

appropriate locations. The current paradigms do not propose any metric or methodology that

is useful for checking the source comments quality. The proposed model and empirical parser

based implementation emphasize the efficient and meaningful usage of code comments in the

source code regardless of the language or script.

The source code written in any programming language or script should be modifiable and

based on the understandability of the source code. Once the program is made modifiable

based on assorted metrics and parameters, any programmer can update it. This research work

focus on the improvement of software code quality based on the escalation of code metrics.

2 Motive of the Evaluation

• To identify the factors affecting the source code quality

• To associate the code comments with the code quality

• To identify the locations and reasons to associate software quality with the comments

• To investigate the factors affecting the quality of the source code itself

• To frame out an empirical model for the improvement of the source code quality re-

gardless of the programming language to be used

• To locate the factors and points that directly or indirectly affect the code quality

• To find out the association of code understandability with the complexity as well as

related parameters

• To fetch and locate multiple parameters as well as the taxonomy identification

o Stop Words

o Bad Comments

o Good Comments

o Meaningless Comments

o Nominal Comments

o Too Many Stop Words

o Unnecessary

o With Stop Words

o No Comments

• To develop an efficient parser for code investigation

• To qualify and embed the web based parser with deep code investigation features that

includes the major parameters

• To analyze the correlation between code understandability and code parameters

• To investigate the correlation between comments and stop words

• To frame out the line density as well as word density that is useful and effective for

better understandability of the source code.

• To design multiple mutants of the source codes for deep investigation without biasing.

• To associate the software code quality with the meaningful parameters that affect the

overall performance of the software.

Such measures are software metrics introduced by Maurice Howard Halstead in 1977 as part

of the treatise on establishing an empirical science of software development. Halstead makes

the observation that metrics of the software should reflect the implementation or expression

of algorithms in different languages, but be independent of their execution on a specific plat-

form. These metrics are therefore computed statically from the code. Halstead's goal was to

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 3 May - June 2016

International Manuscript ID : 23482001V4I3052016-101

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

identify measurable properties of software, and the relations between them. This is similar to

the identification of measurable properties of matter (like the volume, mass, and pressure of a

gas) and the relationships between them (analogous to the gas equation). Thus his metrics are

actually not just complexity metrics. Halstead complexity metrics were developed by the late

Maurice Halstead as a means of determining a quantitative measure of complexity directly

from the operators and operands in the module to measure a program module's complexity

directly from source code. Among the earliest software metrics, they are strong indicators of

code complexity. Because they are applied to code, they are most often used as maintenance

metric. There is evidence that Halstead measures are also useful during development, to as-

sess code quality in computationally-dense applications. Because maintainability should be a

concern during development, the Halstead measures should be considered for use during code

development to follow complexity trends. Halstead measures were introduced in 1977 and

have been used and experimented with extensively since that time. They are one of the oldest

measures of program complexity. Halstead’s metrics is based on interpreting the source code

as a sequence of tokens and classifying each token to be an operator or an operand.

3 Proposed Methodology and Formulation

In this research manuscript, the evaluation of software metrics associated with the software

code is done so that the new parameters for understanding can be analyzed, fetched and

measured. In this work, the comments in source code with the understanding factors are taken

very carefully so that the overall reusability can be increased.

SCCM = (s+r-o-g) => ((number of attributed shared in class/no of attributes in class)) +

((number of methods returning no value/total methods in class or function returning no value

to the other function(1))) – ((number of methods returning value outside the class/total me-

thods in class or function returning value to other function(1))) - ((total number of global or

public variables / total variables in the class))

Fig. 1. Evaluation Parameters and Flow of the Research Work

SCCM < X < N where N = Decision Parameters Used

SAMPLE SOURCE CODE : CPGM2.C

=> Main : 1

=> Generate_armstrong : : 0.8

=> Find_npr : -1.6

=> Find_ncr : : -1.6

=> gcd : -2

=> Calculate_LCM_HCF : : 0 :

=> Display_pascal : 0.66

=> Display_floyd_triangle : 0.75

=> Frequency_chars : : 1

=> Upper_String : 0

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 3 May - June 2016

International Manuscript ID : 23482001V4I3052016-101

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

=> Lower_string : 0

=> Sort_String : 0.86

=> Substring : 0.4

=> Concatenate_string : 0

COUPLING METRIC => ((total shared variable/total variable) +(total shared function

including public/total function) +(if ci inherits cj then 1 else 0;)

1 < coupling metric < n

CM=(s+p+i)

CODE : CPGM2.C

=> Main : 0

=> Generate_armstrong : : 0.2

=> Find_npr : 0.6

=> Find_ncr : : 0.6

=> gcd : 1

=> Calculate_LCM_HCF : : 1

=> Display_pascal : 0.33

=> Display_floyd_triangle : 0.25

=> Frequency_chars : : 0

=> Upper_String : 1

=> Lower_string : 1

=> Sort_String : 0.14

=> Substring : 0.6

=> Concatenate_string : 1

4 Results and Findings from Reusability and Code Quality

In this research work and implementation aspects, more than 50 source code files of different

paradigms including procedural and object oriented methodology are evaluated on multiple

parameters so that different type of programs can be evaluation on the base of understanding

and reusability.

Table 1. Evaluation of Source Code in Procedural Implementation

Cohe-

sion

Coupl

ing

Understandabil-

ity (In Minutes)

After Survey

Reusability (1-10)

=> (Cohe-

sion/Coupling)*K

where K=10

Class / Module

Name

1 0 38 0 Main

0.8 0.2 20 40 Gener-

ate_Armstrong

-1.6 0.6 50 -26.66666667 Find_npr

-1.6 0.6 50 -26.66666667 Find_ncr

-2 1 55 -20 GCD

0 1 20 0 Calcu-

late_LCM_HCF

0.66 0.33 15 20 Display_pascal

0.75 0.25 40 30 Dis-

play_floyd_triangle

1 0 30 0 Frequency_chars

0 1 32 0 Upper_String

0 1 34 0 Lower_string

0.86 0.14 60 61.42857143 Sort_String

0.4 0.6 20 6.666666667 Substring

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 3 May - June 2016

International Manuscript ID : 23482001V4I3052016-101

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

0 1 37 0 Concatenate_string

Fig. 2. Evaluation of Cohesion, Coupling and Understandability in the Source Code

Table 2. Evaluation of Statistical Parameters

Reusability (1-10)

=> (Cohe-

sion/Coupling)*K

where K=10

Class / Module

Name

Ef-

forts

Level

0 Main 2

40 Gener- 2

ate_Armstrong

-26.66666667 Find_npr 1

-26.66666667 Find_ncr 1

-20 GCD 1

0 Calcu-

late_LCM_HCF

2

20 Display_pascal 2

30 Dis-

play_floyd_triangle

2

0 Frequency_chars 2

0 Upper_String 2

0 Lower_string 2

61.42857143 Sort_String 3

6.666666667 Substring 2

0 Concatenate_string 2

Table 3. Evaluation of Source Code with Object Oriented Paradigm

Cohe-

sion

Coupli

ng

Understanda-

bility (In Mi-

nutes) After Sur-

vey

Reusability (1-10) =>

(Cohesion/Coupling)*K

where K=10

Class / Module

Name

1 2 30 5 Person

1 3 20 3.333333333 Account

1 3 20 3.333333333 Admin

1 2 20 5 Master

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 3 May - June 2016

International Manuscript ID : 23482001V4I3052016-101

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

Fig. 3. Evaluation of Class in the Object Oriented Source Code with Understanding

Factors

After empirical survey and metric results, it is evident that the reusability of the source

code is directly dependent on the understandability. We have conducted the pragmatic survey

of different source codes (procedural and object oriented) and it is analyzed that understanda-

bility is vital in finding out the reusability of the source code.

Conclusion

In this research manuscript, the evaluation of source code for understandability and related

reusability is done. Once the source code is found understandable with the proper and suffi-

cient number of comments with the indents, it is easy for new developer to evaluate the flow

of code and easily new modules can be inserted. By this implementation and approach, the

overall integrity of code can be increased. In this work, the source code reusability is asso-

ciated because the source code and final developed software can be made reusable is that is

easy to understand by the developer for new updates and insertions with new developed plu-

gins and modules.

References

1. T. Tenny "Program Readability: Procedures Versus Comments " IEEE Trans. Softw. Eng.

vol. 14 no. 9 1988.

2. S. N. Woodfield H. E. Dunsmore and V. Y. Shen "The effect of modularization and com-

ments on program comprehension " ser. ICSE '81 1981.

3. S. C. B. de Souza N. Anquetil and K. M. de Oliveira "A Study of the Documentation Es-

sential to Software Maintenance " ser. SIGDOC '05 2005.

4. C. S. Hartzman and C. F. Austin "Maintenance productivity: Observations based on an

experience in a large system environment " ser. CASCON '93 1993.

5. B. P. Lientz "Issues in Software Maintenance " ACM Computing Surveys vol. 15 no. 3

1983.

6. M. J. B. García and J. C. G. Alvarez "Maintainability as a Key Factor in Maintenance

Productivity: A Case Study " ser. ICSM '96 1996.

7. P. Oman and J. Hagemeister "Metrics for Assessing a Software System's Maintainability "

ser. ICSM '92 1992.

8. I. S. Microsystems Code Conventions for the Java Programming Language 1997. [Online].

Available: http://www.oracle.com/ technetwork/java/codeconv- 138413.html

9. N. Khamis R. Witte and J. Rilling "Automatic Quality Assessment of Source Code Com-

ments: the JavadocMiner " ser. NLDB '10 2010.

10. M.-A. Storey J. Ryall R. I. Bull D. Myers and J. Singer "TODO or To Bug: Exploring

How Task Annotations Play a Role in the Work Practices of Software Developers " ser. ICSE

'08 2008.

