
ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 5 Issue 4 July 2017

International Manuscript ID : 23482001V5I4072017-121

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

Software Testing Life Cycle and Code Evaluation

Tamanna

Research Scholar

Shri Venkateshwara University

Gajraula, Amroha, Uttar Pradesh

Dr. Parmeet Mann

Research Supervisor

Shri Venkateshwara University

Gajraula, Amroha, Uttar Pradesh

Abstract. The Source Code quality and understandability completely relies upon

the remarks indicated at suitable areas. The present ideal models don't propose

any metric or technique that is helpful for checking the source remarks quality.

The proposed display and observational parser based execution underline the pro-

ficient and significant utilization of code remarks in the source code paying little

respect to the dialect or content. In this exploration work, the exact and down to

earth assessment of the source understandability and the heightening is finished

utilizing review based investigation. The source code remarks and understanding

variables are taken into the thought with the goal that the reusability of the source

code can be expanded. The key parameters for assessment of source code incor-

porate union, coupling and the kind of source code. The sort of source code is

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 5 Issue 4 July 2017

International Manuscript ID : 23482001V5I4072017-121

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

having the kind of procedural or question arranged worldview so any kind of

source code with its innate component focuses can be examined and anticipated.

Keywords: Source Code Understanding, Software Metrics, Software Quality,

Software Reusability.

1 Introduction

In the context of software engineering, software quality refers to two related but distinct

notions that exist wherever quality is defined in a business context:

• Software functional quality reflects how well it complies with or conforms to a given de-

sign, based on functional requirements or specifications. That attribute can also be de-

scribed as the fitness for purpose of a piece of software or how it compares to competitors

in the marketplace as a worthwhile product. It is the degree to which the correctsoftware

was produced.

• Software structural quality refers to how it meets non-functional requirements that sup-

port the delivery of the functional requirements, such as robustness or maintainability. It

has a lot more to do with the degree to which the software works as needed.

Many aspects of structural quality can be evaluated only statically through the analysis of

the software inner structure, its source code, at the unit level, the technology level and the

system level, which is in effect how its architecture adheres to sound principles of software

architecture outlined in a paper on the topic by OMG. But some structural qualities, such

as usability, can be assessed only dynamically (users or others acting in their behalf interact

with the software or, at least, some prototype or partial implementation; even the interaction

with a mock version made in cardboard represents a dynamic test because such version can

be considered a prototype). Other aspects, such as reliability, might involve not only the

software but also the underlying hardware, therefore, it can be assessed both statically and

dynamically (stress test).

Functional quality is typically assessed dynamically but it is also possible to use static tests

(such as software reviews).

Historically, the structure, classification and terminology of attributes and metrics applica-

ble to software quality management have been derived or extracted from the ISO 9126-3 and

the subsequent ISO 25000:2005 quality model, also known as SQuaRE. Based on these mod-

els, the Consortium for IT Software Quality (CISQ) has defined five major desirable structur-

al characteristics needed for a piece of software to provide business value: Reliability, Effi-

ciency, Security, Maintainability and (adequate) Size.

Software quality measurement quantifies to what extent a software program or system rates

along each of these five dimensions. An aggregated measure of software quality can be com-

puted through a qualitative or a quantitative scoring scheme or a mix of both and then a

weighting system reflecting the priorities. This view of software quality being positioned on a

linear continuum is supplemented by the analysis of "critical programming errors" that under

specific circumstances can lead to catastrophic outages or performance degradations that

make a given system unsuitable for use regardless of rating based on aggregated measure-

ments. Such programming errors found at the system level represent up to 90% of production

issues, whilst at the unit-level, even if far more numerous, programming errors account for

less than 10% of production issues. As a consequence, code quality without the context of the

whole system, as W. Edwards Deming described it, has limited value.

To view, explore, analyze, and communicate software quality measurements, concepts and

techniques of information visualization provide visual, interactive means useful, in particular,

if several software quality measures have to be related to each other or to components of a

software or system. For example, software maps represent a specialized approach that "can

express and combine information about software development, software quality, and system

dynamics".

Software Testing Life Cycle (STLC) refers to the process of testing that is executed in

planned and systematic manner. In this process, assorted activities are performed to improve

the overall quality of product. Here a number of objects and activities are involved.

Following is the list of steps which are involved and associated with the STLC. Every step is

having the unique deliverable.

1. Requirement Analysis

2. Test Planning

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 5 Issue 4 July 2017

International Manuscript ID : 23482001V5I4072017-121

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

3. Test Case Development

4. Environment Setup

5. Test Execution

6. Test Cycle Closure

“More specifically, the further step is relying on the previous step or it can be said that the

next step is not started till the previous step is not finished. This is possible in very ideal

point, but very practically not always true.

Requirement Analysis - Requirement Analysis is the very first step in Software Testing Life

Cycle (STLC). In this step Quality Assurance (QA) team understands the requirement in

terms of what we will testing & figure out the testable requirements. If any conflict, missing

or not understood any requirement, then QA team follow up with the various stakeholders

like Business Analyst, System Architecture, Client, Technical Manager/Lead etc to better

understand the detail knowledge of requirement.

From very first step QA involved in the where STLC which helps to prevent the introducing

defects into Software under test. The requirements can be either Functional or Non-

Functional like Performance, Security testing. Also requirement and Automation feasibility

of the project can be done in this stage (if applicable)

Test Planning - Test Planning is most important phase of Software testing life cycle where all

testing strategy is defined. This phase also called as Test Strategy phase. In this phase typi-

cally Test Manager (or Test Lead based on company to company) involved to determine the

effort and cost estimates for entire project. This phase will be kicked off once the requirement

gathering phase is completed & based on the requirement analysis, start preparing the Test

Plan. The Result of Test Planning phase will be Test Plan or Test strategy & Testing Effort

estimation documents. Once test planning phase is completed the QA team can start with test

cases development activity.

Test Case Development - The test case development activity is started once the test planning

activity is finished. This is the phase of STLC where testing team write down the detailed test

cases. Along with test cases testing team also prepare the test data if any required for testing.

Once the test cases are ready then these test cases are reviewed by peer members or QA lead.

Also the Requirement Traceability Matrix (RTM) is prepared. The Requirement Traceability

Matrix is an industry-accepted format for tracking requirements where each test case is

mapped with the requirement. Using this RTM we can track backward & forward traceabil-

ity.

Test Environment Setup - Setting up the test environment is vital part of the STLC. Basically

test environment decides on which conditions software is tested. This is independent activity

and can be started parallel with Test Case Development. In process of setting up testing envi-

ronment test team is not involved in it. Based on company to company may be developer or

customer creates the testing environment. Mean while testing team should prepare the smoke

test cases to check the readiness of the test environment setup.

Test Execution - Once the preparation of Test Case Development and Test Environment

setup is completed then test execution phase can be kicked off. In this phase testing team start

executing test cases based on prepared test planning & prepared test cases in the prior step.

Once the test case is passed then same can be marked as Passed. If any test case is failed then

corresponding defect can be reported to developer team via bug tracking system & bug can

be linked for corresponding test case for further analysis. Ideally every failed test case should

be associated with at least single bug. Using this linking we can get the failed test case with

bug associated with it. Once the bug fixed by development team then same test case can be

executed based on your test planning.

If any of the test cases are blocked due to any defect then such test cases can be marked as

Blocked, so we can get the report based on how many test cases passed, failed, blocked or not

run etc. Once the defects are fixed, same Failed or Blocked test cases can be executed again

to retest the functionality.

Closure of Test – It refers to the calling out of testing team so that the overall performance

and bugs report can be fetched out and further predictions can be done.

Metrics

History of SDP studies started from 1970s; number of metrics are used in SDP models.

Mainly metrics are categorized as code and process metrics. Code metrics is source code me-

trics and also called as product metrics.

International Refereed Journal of Reviews

International Manus

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

Code metrics: Code Metrics used to measure the complexity. Code metrics states that

complex source is more bug-prone. Data collected from the existing source code.

Size Met-

ric

Halstead

 Metric

1. Size metrics: Size metrics measure volume, length, quantity, and overall magnitude of

software products The size metrics is represented by lines of code (LOC).The Co

plexity shown by LOC is very simple and very easy to unde

2. Halstead metrics: Metrics based on the number of operators and operands proposed

several size metrics operators and operands. This metrics measures the program

length, difficulty, time, vocabulary, volume and effort. The majority of metrics are a

sociated to quantity or size.It is a widely used metric.

• x = the number of distinct operators

• y = the number of distinct operands

• a = the total number of operators

• b = the total number of operands

ISSN (Online) : 2348

International Refereed Journal of Reviews and Research

Volume 5 Issue 4 July 2017

International Manuscript ID : 23482001V5I4072017-121

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

: Code Metrics used to measure the complexity. Code metrics states that

prone. Data collected from the existing source code.

McCabe

Metric

CK

Metric

OO

Metric

Types of Process Metric

Size metrics: Size metrics measure volume, length, quantity, and overall magnitude of

software products The size metrics is represented by lines of code (LOC).The Co

plexity shown by LOC is very simple and very easy to understand.

Halstead metrics: Metrics based on the number of operators and operands proposed

several size metrics operators and operands. This metrics measures the program

length, difficulty, time, vocabulary, volume and effort. The majority of metrics are a

ociated to quantity or size.It is a widely used metric.

= the number of distinct operators

= the number of distinct operands

= the total number of operators

number of operands

Metrics

Code

Process

ISSN (Online) : 2348 - 2001

: Code Metrics used to measure the complexity. Code metrics states that

prone. Data collected from the existing source code.

OO

Metric

Size metrics: Size metrics measure volume, length, quantity, and overall magnitude of

software products The size metrics is represented by lines of code (LOC).The Com-

Halstead metrics: Metrics based on the number of operators and operands proposed

several size metrics operators and operands. This metrics measures the program

length, difficulty, time, vocabulary, volume and effort. The majority of metrics are as-

From these numbers, several measures can be calculated:

• Program vocabulary: z=x+y

• Program length: c=a+b

• Calculated program length: L= xlogx+ylogy

• Volume: V= c+logz

• Difficulty : D=x/2+b/y

• Effort: D*V

Advantage: Data flow is considered.

Disadvantage: It does not consider the control flow.

3. McCabe metric: Cyclomatic metric was proposed by McCabe. Complexity of soft-

ware products is represented by Cyclomatic metric. In control flow graphs of source

code the cyclomatic metric is measured by the arcs, connected components and num-

ber of nodes code. It also measures the number of complexcontrol path. The complex-

ity of code structure is measured by McCabe’s cyclomatic metric. The Cyclomatic

metric is different from Halstead and size metrics.

Limitation: Data flow is not considered.

4. Object-oriented Metric: OO metric is widely used metric because it maps to real

world entity. The development process improves by using OO metric.

5. CK Metrics:CK Metrics is used to represent OO metrics. Characteristics such as co-

hesion, inheritance and coupling of OO metric are used to design the CK metric. A

DPM can be built by using CK metric.

Process metrics: The process metric is achieved from software repository that has devel-

opment history. The software repositories are issue control system and version control sys-

tem.

1) Relative code change churn: A relative code churn metrics measuring the total changes

in code. It is computed by the number of lines added and delete divided by total LOC. It is an

excellent predictor to give explanationof the defect densityof a binary and bug-proneness.

2) Change metrics: It measures the amount of changes in thehistory recorded in version

control systems. Like relative code change churn, it also includes deleted LOC and added

LOC. It did not consider the file count and total LOC. It considers maximum values and av-

erage values of change churn metrics.

Change metric includes age metrics and average and maximum of change set. Its conclu-

sion is that change metrics are good predictors than code metrics.

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 5 Issue 4 July 2017

International Manuscript ID : 23482001V5I4072017-121

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

Process Metric Metric Source

Relative Code change churn Version control

Change Metric Version control

Change Entropy Version control

Code metric churn, Code Entropy Version control

Popularity Version control

Ownership Version control

Micro Instruction Metric Mylyn

Process Metric (Nam Jaechang)

3) Change Entropy: A history complexity metric (HCM) was proposed when Shannon en-

tropy was applied to discover the how changes are complex. To authorize the HCM, a statis-

ticallinear regression models were built based on two change metrics or HCM.The two

change metrics is defined as number of previousmistake and previous alteration on six open-

source projects. Their assessment on six opensourceprojects illustrate that prediction models

constructed using HCM do better than the twochange metrics. The Entropy is used to compu-

tethe change complexity isdifferent but comparing models by HCM to those by only two

change metrics disclose the limitationof the assessment of HCM andestimation was per-

formed in the subsystem-level.

4) Code metric churn, Code Entropy: A comparison studyof defect prediction metrics was

conducted, in that metric comparison; there is only study about change Entropy and code

churn metrics but no study about code Entropy and code metric churn. Thus code metric

churn (CHU)and code Entropy (HH) metrics were proposed.

CHU computes the changein biweekly basis of code metrics like CK metrics and OO me-

trics. Since code metric churncomputes the amount of changes in biweekly basis unlike to

code change metrics based on the quantity of lines. CHU captures the amount of changes-

more accurately than code change churn that computes the amount of changes between a new

and anold (base) revision. By applying decay functions four variants of CHU were proposed.

HHis computed based on the count of involved files when a certain code metric is changed.

5) Popularity: E-mail archives were analysedand popularity metric was proposed bydeve-

lopers in a group mailing list. It is more discussedsoftware artifacts that are more bug-prone

in e-mail archives. Most metrics measure how many number of times a class are discussed in

mails. Their assessment of the metrics shows that process metrics and code metric do better

than popularitymetrics.

Conclusion

Metric estimation is the primary part of the examination. Estimation is characterized as the

estimation of characteristic in direct estimation, yet no one but esteem can't be considered for

each software or errand. In this way the utilization of direct estimation is less. In Indirect es-

timation n-tuple space are considered, for instance Module Defect Density, RS and System

Spoilage and so forth. A metric is likewise an estimation capacity. Nitty gritty study is re-

quired to think about what and how metric play out the required undertaking (Kener and

Bond 2004).

Causal model made by a group of experienced and very talented trough to foresee the defor-

mities. Few elements must be viewed as like expense and quality. Causal model is likewise

called as Bayesian Net which is made of two sections first is coordinated non-cyclic diagram

and second likelihood disseminations. Dataset from thirty one software genuine undertakings

was assembled by utilizing a survey. The consequence of survey is in language specialist

term for this, an extent is characterized for every inquiry. Deformity Prediction Causal model

comprises of a colossal system having a few subnetworks. Each subnetwork is a causal model

or a bayesian net and the result of each created in etymological term.

References

1. T. Tenny "Program Readability: Procedures Versus Comments " IEEE Trans. Softw. Eng.

vol. 14 no. 9 1988.

2. S. N. Woodfield H. E. Dunsmore and V. Y. Shen "The effect of modularization and com-

ments on program comprehension " ser. ICSE '81 1981.

3. S. C. B. de Souza N. Anquetil and K. M. de Oliveira "A Study of the Documentation Es-

sential to Software Maintenance " ser. SIGDOC '05 2005.

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 5 Issue 4 July 2017

International Manuscript ID : 23482001V5I4072017-121

(Approved and Registered with Govt. of India)

Registered with Council of Scientific and Industrial Research, Govt. of India

4. C. S. Hartzman and C. F. Austin "Maintenance productivity: Observations based on an

experience in a large system environment " ser. CASCON '93 1993.

5. B. P. Lientz "Issues in Software Maintenance " ACM Computing Surveys vol. 15 no. 3

1983.

6. M. J. B. García and J. C. G. Alvarez "Maintainability as a Key Factor in Maintenance

Productivity: A Case Study " ser. ICSM '96 1996.

7. P. Oman and J. Hagemeister "Metrics for Assessing a Software System's Maintainability "

ser. ICSM '92 1992.

8. I. S. Microsystems Code Conventions for the Java Programming Language 1997. [Online].

Available: http://www.oracle.com/ technetwork/java/codeconv- 138413.html

9. N. Khamis R. Witte and J. Rilling "Automatic Quality Assessment of Source Code Com-

ments: the JavadocMiner " ser. NLDB '10 2010.

10. M.-A. Storey J. Ryall R. I. Bull D. Myers and J. Singer "TODO or To Bug: Exploring

How Task Annotations Play a Role in the Work Practices of Software Developers " ser. ICSE

'08 2008.

