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Abstract: Parallelism has now become pervasive in today’s league of computers, so it seems important to provide an 

analysis of the models that have evolved in past years for parallel computation. In this paper the concentration is 

specifically on models with certain pragmatic application in sync with a viewpoint on models with possible future 

applicability. Along with citing, the models paper also ascribes implementation in programming language and means. 
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1. Introduction 

Recent desktop and high performance processors 

provide multiple hardware threads (technically realized 

by hardware multithreading and multiple processor 

cores on a single chip). Very soon, programmers will be 

faced with hundreds of hardware threads per processor 

chip. As exploitable instruction level parallelism in 

applications is limited and the processor clock 

frequency cannot be increased any further due to power 

consumption and heat problems, exploiting (thread 

level) parallelism becomes unavoidable, if further 

improvement in processor performance is required, and 

there is no doubt that our requirements and expectations 

of machine performance will increase further. This 

means that parallel programming will actually concern a 

majority of application and system programmers in the 

foreseeable future both in the desktop and embedded. 

A model of parallel computation consists of a 

parallel programming model and a corresponding cost 

model. A parallel programming model describes an 

abstract parallel machine by its basic operations (such as 

arithmetic operations, spawning of tasks, reading from 

and writing to shared memory, or sending and receiving 

messages), their effects on the state of the computation, 

the constraints of when and where these can be applied, 

and how they can be composed. In particular, a parallel 

programming model also contains, at least for shared 

memory programming models, a memory model that 

describes how and when memory accesses can become 

visible to the different parts of a parallel computer. The 

memory model sometimes is given implicitly. A parallel 

cost model associates a cost (which usually describes 

parallel execution time and resource occupation) with 

each basic operation, and describes how to predict the 

accumulated cost of composed operations up to entire 

parallel programs.  

Parallel algorithms are usually formulated in terms 

of a particular parallel programming model. In contrast 

to sequential programming, where the von Neumann 

model is the predominant programming model (notable 

alternatives are e.g. data flow and declarative 
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programming), there are several competing parallel 

programming models. This heterogeneity is partly 

caused by the fact that some models are closer to certain 

existing hardware architectures than others, and partly 

because some parallel algorithms are easier to express in 

one model than in another one. Programming models 

abstract to some degree from details of the underlying 

hardware, which increases portability of parallel 

algorithms across a wider range of parallel 

programming languages and systems.  

A brief survey of parallel programming models and 

comment on their merits and perspectives from both a 

theoretical and practical view is been presented. The 

focus is on brief classification of parallel models and 

languages. Basic references are articles and books in the 

literature such as by [7], Skillicorn[44], Giloi[24], 

Maggs[38], Skillicorn and Talia[45,46], Lengauer[35], 

and Leopold[36].  

2. Model Survey 

 
Before presenting parallel programming models, in next 

section (2.1) two fundamental issues in parallel program 

execution that occur in implementations of several 

models is discussed. 

2.1 Parallel Execution Styles 

 There exist several different parallel execution styles, 

which describe different ways how the parallel 

activities (e.g. Processes, threads) executing a parallel 

program are created and terminated from the 

programmer’s point of view.  The two most prominent 

ones are fork join style and SPMD style parallel 

execution.  

 Execution in Fork join style spawns parallel 

activities dynamically at certain points (fork) in the 

program that mark the beginning of parallel 

computation, and collects and terminates them at 

another point (join). At the beginning and the end of 

program execution, only one activity is executing, but 

the number of parallel activities can vary considerably 

during execution and thereby adapt to the currently 

available parallelism. The mapping of activities to 

physical processors needs to be done at run time by the 

operating system, by a thread package or by the 

language's run-time system.  

 Execution in SPMD style (single program, 

multiple data) creates a fixed number p (usually known 

only from program start) of parallel activities (physical 

or virtual processors) at the beginning of program 

execution (i.e., at entry to main), and this number will 

be kept constant throughout program execution, i.e. no 

new parallel activities can be spawned.  

In contrast to fork-join style execution, the 

programmer is responsible for mapping the parallel 

tasks in the program to the p available processors. 

Accordingly, the programmer has the responsibility 

for load balancing, while it is provided 

automatically by the dynamic scheduling in the 

fork-join style.  

  Nested parallelism can be achieved with 

SPMD style as well, name if a group of p 

processors is subdivided into s subgroups of pi 

processors each, where ∑pi ≤ p. Each subgroup 

takes care of one subtask in parallel. After all 

subgroups are finished with their subtask they are 

discarded and the parent group resumes execution. 

As group splitting can be nested, the group 

hierarchy forms a tree at any time during program 

execution, with the leaf groups being the currently 

active ones.  

2.2 Parallel Random Access 

Machine 

The Parallel Random Access Machine (PRAM) 

model was proposed by Fortune and Wyllie [20] as 

a simple extension of the Random Access Machine 

(RAM) model used in the design and analysis of 

sequential algorithms. The PRAM assumes a set of 

processors connected to a shared memory. There is 

a global clock that feeds both processors and 

memory, and execution of any instruction 

(including memory accesses) takes exactly one unit 

of time, independent of the executing processor and 

the possibly accessed memory address. Also, there 

is no limit on the number of processors accessing 

shared memory simultaneously.  

The memory model of the PRAM is strict 

consistency, the strongest consistency model 

known[3],  which says that a write in clock cycle t 

becomes globally visible to all processors in the 

beginning of clock cycle t+1 not earlier and not 

later.  

The PRAM model also determines the effect of 

multiple processors writing or reading the same 

memory location in the same clock cycle. An 

EREW PRAM allows a memory location to be 

exclusively read or written by at most one 

processor at a time, the CREW PRAM allows 

concurrent reading but exclusive writing, and 
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CRCW even allows simultaneous write accesses by 

several processors to the same memory location in 

the same clock cycle.  

Practical Relevance: The PRAM model is unique 

in that it supports deterministic parallel 

computation, and it can be regarded as one of the 

most programmer friendly models available. 

Numerous algorithms have been developed for the 

PRAM model JaJa[29]. It is the most basic model 

for parallel algorithms[32] and focuses on pure 

parallelism only, rather than data locality and 

communication efficiency.  

 A cost effective realization of PRAMs is 

possible using hardware techniques such as 

multithreading and smart combining networks, 

such as the NYU Ultracomputer [25], SBPRAM by 

Wolfgang Paul’s group in Saarbrucken [1,30,40], 

XMT by Vishkin [49], and ECLIPSE by Forsell 

[19]. PRAM is a general purpose model that is 

completely insensitive to data locality.  

PRAM model variants have been proposed 

within the parallel algorithms theory community 

such as asynchronous PRAM variants [13, 23], the 

hierarchical PRAM (H PRAM) ,the   block   

PRAM [4], the queuing PRAM (Q PRAM), and the 

distributed PRAM(DRAM), to name only a few. 

The BSP model, discussed in Section 2.4, regarded 

a relaxed PRAM, introduced to bridge the gap 

between idealistic models and actual parallel 

machines.        
 
Implementations: Several PRAM programming 

languages have been, such as Fork [30,33]. Also 

methods for translating PRAM algorithms 

automatically for other models such as BSP or 

message passing have been proposed. 

2.3 Unrestricted Message Passing 

A distributed memory machine sometimes called 

message passing multicomputer, consists of a 

number of RAMs that run asynchronously and 

communicate via messages sent over a 

communication network.  Normally it is assumed 

that the network performs message   routing, so 

that a processor can send a message to any other 

processor without consideration of the particular 

network structure. Send and receive commands can 

be either blocking, i.e. the processors get 

synchronized, or non blocking, i.e. the sending 

processor puts the message in a buffer and 

proceeds with its program, while the message 

passing subsystem forwards the message to the 

receiving processor and buffers it there until the 

receiving processor executes the receive command. 

There are also more complex forms of 

communication that involve a group of processors, 

so called collective communication operations such 

as broadcast, multicast, or reduction operations.  

The cost model of a message passing 

multicomputer consists of two parts. The 

operations performed locally are treated as in a 

RAM. Point to point non blocking communications 

are modelled by the LogP model[14]. The latency 

L specifies the time that a message of one word 

needs to be transmitted from sender to receiver. 

The overhead o specifies the time that the sending 

processor is occupied in executing the send 

command. The gap g gives the time that must pass 

between two successive send operations of a 

processor, and thus models the processor’s 

bandwidth to the communication network.  The 

processor count P gives the number of processors 

in the machine. The LogP model has been extended 

to the LogGP model [5], by introducing another 

parameter G that models the bandwidth for longer 

messages.  

Practical Relevance:  Message passing models 

such as CSP (communicating sequential processes) 

have been used in the theory of concurrent and 

distributed systems for many years. With the 

definition of vendor independent message passing 

libraries, message passing became the dominant 

programming style on large parallel computers.  

Implementations: Early vendor specific libraries 

were replaced in the early 1990s by portable 

message passing libraries such as PVM and MPI. 

MPI was later extended in the MPI 2.0 standard 

(1997) by one sided communication and fork join 

style. MPI interfaces have been defined for Fortran, 

C and C++.  Open source implementation exists 

such as OpenMPI.  

2.4 Bulk Synchronous Parallelism 

The bulk synchronous parallel  (BSP)  model, 

proposed by Valiant in 1990 [48] and modified by 

McColl [39], enforces a structuring of message 
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passing computations as a (dynamic) sequence of 

barrier separated supersteps, where each superstep 

consists of a  computation phase operating on local 

variables only, followed by a global interprocessor 

communication phase. The cost model involves 

only three parameters (number of processors p, 

point to point network bandwidth g, and message 

latency resp. barrier overhead L such that the worst 

case (asymptotic) cost for a single superstep can be 

estimated as w+hg+L), if the maximum local work 

w per processor and the maximum communication 

volume h per processor are known. The cost for a 

program is then simply determined by summing up 

the costs of all executed supersteps.  

Practical Relevance: BSP model allows deriving 

realistic predictions of execution time and can 

thereby guide algorithmic design decisions and 

balance trade-offs.       

Implementations: The BSP model is mainly 

realized in the form of libraries such as BSPlib [27] 

or PUB [9] for an SPMD execution style. 

2.5 Asynchronous Shared Memory and 

Partitioned Global Address Space 

In the shared memory model, several threads of 

execution have access to a common memory, the 

threads of execution run asynchronously.     

A recent development is transactional 

memory ([26],[2]), which adopts the transaction 

concept known from database programming as a 

primitive for parallel programming of shared 

memory systems. A transaction is a sequential 

code   section enclosed in a statement such as 

atomic {.....} that should either fail completely or 

commit completely to shared memory as an 

atomic operation 

Practical Relevance: Shared memory 

programming has become the dominant form of   

programming for small scale parallel computers, 

notably SMP systems. As large scale parallel 

computers have started to consist of clusters of 

SMP nodes, shared memory programming on the 

SMPs also has been combined with message 

passing concepts. 

Implementations:Cilk [8], is a shared memory 

parallel language for algorithmic multithreading.  

OpenMP is gaining popularity with the 

arrival of multicore processors and may 

eventually replace Pthreads completely. OpenMP 

provides structured parallelism in a combination 

of SPMD and fork join styles.The Linda system 

[10] provides a shared memory via the concept of 

tuple spaces, which is much more abstract than 

linear addressing, and partly resembles access to a 

relational database.  

2.6 Data Parallel Models 

Data parallel models include SIMD (Single 

Instruction, Multiple Data) and vector   computing, 

data parallel computing, systolic computing 

cellular automata, VLIW computing, and stream 

data processing.  

Data parallel computing involves the 

elementwise application of the same scalar 

computation to several elements of one or several 

operand vectors (which usually are arrays or parts 

thereof), creating a result vector. All element 

computations must be independent of each other, 

and may therefore be executed in any order in 

parallel, or in a pipelined way. 

Practical Relevance: Vector computing was the 

paradigm used by the early vector super computers 

in the 1990s and 1980s and is still an essential part 

of modern high performance computer 

architectures. It is a special case of the SIMD 

computing paradigm. Most modern high end 

processors have vector units extending their 

instruction set by SIMD/vector operations. VLIW 

is today also a popular concept in high performance 

processors for the digital signal processing (DSP) 

domain.  

Implementations:  APL [28] is an early SIMD 

programming language. Other SIMD languages 

include Vector-C [37] and C* [43]. Fortran90 

supports vector computing and even a simple form 

of data parallelism. With the HPF [31] extensions, 

it became a full-fledged data parallel language. 

Other data parallel languages include ZPL [47] 

NESL Dataparallel C and Modula-2* [42]. 

2.7 Task-Parallel Models and Task 

Graphs 

Many applications can be considered as a set of 

tasks each task, solving part of the problem at hand. 

Tasks may communicate with each other during 

their existence, or may only accept inputs as a 
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prerequisite to their start, and send results to other 

tasks only when they terminate. Tasks may spawn 

other tasks in a fork-join style, and this may be 

done even in a dynamic and data dependent 

manner. Such collections of tasks may be 

represented by a task graph, where nodes represent 

tasks and arcs represent communication, i.e. data 

dependencies.  

Practical Relevance: Hardware  software  co-

design  has  gained  some  interest  by the  

integration of reconfigurable  hardware  with  

microprocessors on  single chips.   Grid   

computing has gained considerable attraction in the 

last years, mainly driven by the enormous 

computing power needed to solve grand challenge 

problems in natural and life sciences.  

Implementations: A prominent example for 

parallel data flow computation was the MIT 

Alewife machine with the ID functional 

programming language [3].There are several grid 

middlewares, most prominently Globus [22] and 

Unicore [17], for which a multitude of schedulers 

exists.  

3. General Parallel Programming 

Methodologies 

In this section, the features, advantages and 

drawbacks of several widely used approaches to 

the design of parallel software has been reviewed.  

Many of these actually start from an existing 

sequential program for the same   problem, which 

is more restricted but of very high significance for 

software industry that has to port a host of legacy 

code to parallel platforms in these days, while other 

approaches encourage a radically different parallel 

program design from scratch.  

3.1 Foster’s PCAM Method 

Foster [21] suggests that the design of a parallel 

program should start from an existing  (possibly 

sequential) algorithmic solution to a computational 

problem by partitioning it into many small tasks 

and identifying dependences between these that 

may result in communication and synchronization, 

for which suitable structures should be selected. 

These first two design phases, partitioning and 

communication, are for a model that puts no 

restriction on the number of processors. The tasks 

are agglomerated to macrotasks (processes) to 

reduce internal communication and 

synchronization relations within a macrotask to 

local memory accesses. Finally, the macrotasks are 

scheduled to physical processors to balance load 

and further reduce communication.  

3.2  Incremental Parallelization 

For many scientific programs, almost all of their 

execution time is spent in a fairly small part of the 

code. Directive based parallel programming 

languages such as HPF and OpenMP, which are 

designed as a semantically consistent extension to 

a sequential base language such as Fortran and C, 

allow to start from sequential source code that can 

be parallelized incrementally.   Usually,   the most 

computationally intensive inner loops are 

identified (e.g., by profiling) and parallelized first 

by inserting some directives, e.g. for loop 

parallelization.  

3.4  Automatic Parallelization 

Automatic parallelization of sequential legacy code 

is of high importance to industry but difficult. It 

occurs in two forms: static parallelization by a 

smart compiler, and run time parallelization with 

support by the language’s run time system or the 

hardware.  

3.5  Skeleton Based and Library-

Based Parallel Programming 

Structured parallel programming, also known as 

skeleton programming [12,41] restricts the many 

ways of expressing parallelism to compositions of 

only a few, predefined patterns, called skeletons. 

Skeletons [12, 15] are generic, portable, and 

reusable basic program building blocks for which 

parallel implementations may be available. They 

are typically derived from higher order functions as 

known from functional programming languages. A 

skeleton based parallel programming system like, 

P3L [6, 41], SCL [15, 16], eSkel [11], MuesLi 

[34], or QUAFF [18], usually provides a relatively 

small, fixed set of skeletons.   Each skeleton 

represents a unique way of exploiting parallelism, 

in a specifically organized type of computation 

such as data parallelism, task farming, parallel 

divide and conquer, or pipelining. While non-

nestable skeletons can be implemented by generic 
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library routines, nestable skeletons require, in 

principle, a static preprocessing that unfolds the 

skeleton hierarchy, e.g.  by using C++ templates or 

C preprocessor macros.  

4. Conclusion 

The review of parallel programming models 

presented in this paper surfaces the current trends 

and provide speculation about the future of parallel 

programming models.  

The future of computing is parallel computing, 

dictated by physical and technical necessity. 

Parallel computer architectures will be more and 

more hybrid, combining hardware multithreading, 

many cores, SIMD units, accelerators and on chip 

communication systems, which require the 

programmer and the compiler to solicit parallelism, 

orchestrate computations and manage data locality 

at several levels in order to achieve reasonable 

performance for example the Cell BE processor. 

Because of their relative simplicity, purely 

sequential languages will remain for certain 

applications that are not performance critical, 

applications that are not performance critical such 

as word processors.  New software engineering 

techniques such as aspect oriented and view based 

programming and model driven development may 

help in managing complexity. 

From an industry perspective tools that allow 

to more or less automatically port sequential legacy 

software are of very high significance. 

Deterministic and time predictable parallel models 

are useful e.g. in the real time domain. Compilers 

and tools technology must keep pace with the 

introduction of new parallel language features. 

Even the most advanced parallel programming 

language is doomed to failure if its compilers are 

premature at its market introduction and produce 

poor code, as we could observe in the 1990s for 

HPF in the high performance computing domain 

[31], where HPC programmers instead switched to 

the lower level MPI as their main programming 

model. 
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