
ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

MODELS FOR PARALLEL

COMPUTING REVIEW AND

PERSPECTIVES

Nahar Priyank Hasmukhbhai

Research Scholar

Shri Venkateshwara University

Uttar Pradesh, India

Dr. Parveen Kumar

Professor

Shri Venkateshwara University

Uttar Pradesh, India

Abstract: Parallelism has now become pervasive in today’s league of computers, so it seems important to provide an

analysis of the models that have evolved in past years for parallel computation. In this paper the concentration is

specifically on models with certain pragmatic application in sync with a viewpoint on models with possible future

applicability. Along with citing, the models paper also ascribes implementation in programming language and means.

Keywords: Parallel Computational Model, Parallel Programming Language, Parallel Cost Model.

1. Introduction

Recent desktop and high performance processors

provide multiple hardware threads (technically realized

by hardware multithreading and multiple processor

cores on a single chip). Very soon, programmers will be

faced with hundreds of hardware threads per processor

chip. As exploitable instruction level parallelism in

applications is limited and the processor clock

frequency cannot be increased any further due to power

consumption and heat problems, exploiting (thread

level) parallelism becomes unavoidable, if further

improvement in processor performance is required, and

there is no doubt that our requirements and expectations

of machine performance will increase further. This

means that parallel programming will actually concern a

majority of application and system programmers in the

foreseeable future both in the desktop and embedded.

A model of parallel computation consists of a

parallel programming model and a corresponding cost

model. A parallel programming model describes an

abstract parallel machine by its basic operations (such as

arithmetic operations, spawning of tasks, reading from

and writing to shared memory, or sending and receiving

messages), their effects on the state of the computation,

the constraints of when and where these can be applied,

and how they can be composed. In particular, a parallel

programming model also contains, at least for shared

memory programming models, a memory model that

describes how and when memory accesses can become

visible to the different parts of a parallel computer. The

memory model sometimes is given implicitly. A parallel

cost model associates a cost (which usually describes

parallel execution time and resource occupation) with

each basic operation, and describes how to predict the

accumulated cost of composed operations up to entire

parallel programs.

Parallel algorithms are usually formulated in terms

of a particular parallel programming model. In contrast

to sequential programming, where the von Neumann

model is the predominant programming model (notable

alternatives are e.g. data flow and declarative

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

programming), there are several competing parallel

programming models. This heterogeneity is partly

caused by the fact that some models are closer to certain

existing hardware architectures than others, and partly

because some parallel algorithms are easier to express in

one model than in another one. Programming models

abstract to some degree from details of the underlying

hardware, which increases portability of parallel

algorithms across a wider range of parallel

programming languages and systems.

A brief survey of parallel programming models and

comment on their merits and perspectives from both a

theoretical and practical view is been presented. The

focus is on brief classification of parallel models and

languages. Basic references are articles and books in the

literature such as by [7], Skillicorn[44], Giloi[24],

Maggs[38], Skillicorn and Talia[45,46], Lengauer[35],

and Leopold[36].

2. Model Survey

Before presenting parallel programming models, in next

section (2.1) two fundamental issues in parallel program

execution that occur in implementations of several

models is discussed.

2.1 Parallel Execution Styles

 There exist several different parallel execution styles,

which describe different ways how the parallel

activities (e.g. Processes, threads) executing a parallel

program are created and terminated from the

programmer’s point of view. The two most prominent

ones are fork join style and SPMD style parallel

execution.

 Execution in Fork join style spawns parallel

activities dynamically at certain points (fork) in the

program that mark the beginning of parallel

computation, and collects and terminates them at

another point (join). At the beginning and the end of

program execution, only one activity is executing, but

the number of parallel activities can vary considerably

during execution and thereby adapt to the currently

available parallelism. The mapping of activities to

physical processors needs to be done at run time by the

operating system, by a thread package or by the

language's run-time system.

 Execution in SPMD style (single program,

multiple data) creates a fixed number p (usually known

only from program start) of parallel activities (physical

or virtual processors) at the beginning of program

execution (i.e., at entry to main), and this number will

be kept constant throughout program execution, i.e. no

new parallel activities can be spawned.

In contrast to fork-join style execution, the

programmer is responsible for mapping the parallel

tasks in the program to the p available processors.

Accordingly, the programmer has the responsibility

for load balancing, while it is provided

automatically by the dynamic scheduling in the

fork-join style.

 Nested parallelism can be achieved with

SPMD style as well, name if a group of p

processors is subdivided into s subgroups of pi

processors each, where ∑pi ≤ p. Each subgroup

takes care of one subtask in parallel. After all

subgroups are finished with their subtask they are

discarded and the parent group resumes execution.

As group splitting can be nested, the group

hierarchy forms a tree at any time during program

execution, with the leaf groups being the currently

active ones.

2.2 Parallel Random Access

Machine

The Parallel Random Access Machine (PRAM)

model was proposed by Fortune and Wyllie [20] as

a simple extension of the Random Access Machine

(RAM) model used in the design and analysis of

sequential algorithms. The PRAM assumes a set of

processors connected to a shared memory. There is

a global clock that feeds both processors and

memory, and execution of any instruction

(including memory accesses) takes exactly one unit

of time, independent of the executing processor and

the possibly accessed memory address. Also, there

is no limit on the number of processors accessing

shared memory simultaneously.

The memory model of the PRAM is strict

consistency, the strongest consistency model

known[3], which says that a write in clock cycle t

becomes globally visible to all processors in the

beginning of clock cycle t+1 not earlier and not

later.

The PRAM model also determines the effect of

multiple processors writing or reading the same

memory location in the same clock cycle. An

EREW PRAM allows a memory location to be

exclusively read or written by at most one

processor at a time, the CREW PRAM allows

concurrent reading but exclusive writing, and

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

CRCW even allows simultaneous write accesses by

several processors to the same memory location in

the same clock cycle.

Practical Relevance: The PRAM model is unique

in that it supports deterministic parallel

computation, and it can be regarded as one of the

most programmer friendly models available.

Numerous algorithms have been developed for the

PRAM model JaJa[29]. It is the most basic model

for parallel algorithms[32] and focuses on pure

parallelism only, rather than data locality and

communication efficiency.

 A cost effective realization of PRAMs is

possible using hardware techniques such as

multithreading and smart combining networks,

such as the NYU Ultracomputer [25], SBPRAM by

Wolfgang Paul’s group in Saarbrucken [1,30,40],

XMT by Vishkin [49], and ECLIPSE by Forsell

[19]. PRAM is a general purpose model that is

completely insensitive to data locality.

PRAM model variants have been proposed

within the parallel algorithms theory community

such as asynchronous PRAM variants [13, 23], the

hierarchical PRAM (H PRAM) ,the block

PRAM [4], the queuing PRAM (Q PRAM), and the

distributed PRAM(DRAM), to name only a few.

The BSP model, discussed in Section 2.4, regarded

a relaxed PRAM, introduced to bridge the gap

between idealistic models and actual parallel

machines.

Implementations: Several PRAM programming

languages have been, such as Fork [30,33]. Also

methods for translating PRAM algorithms

automatically for other models such as BSP or

message passing have been proposed.

2.3 Unrestricted Message Passing

A distributed memory machine sometimes called

message passing multicomputer, consists of a

number of RAMs that run asynchronously and

communicate via messages sent over a

communication network. Normally it is assumed

that the network performs message routing, so

that a processor can send a message to any other

processor without consideration of the particular

network structure. Send and receive commands can

be either blocking, i.e. the processors get

synchronized, or non blocking, i.e. the sending

processor puts the message in a buffer and

proceeds with its program, while the message

passing subsystem forwards the message to the

receiving processor and buffers it there until the

receiving processor executes the receive command.

There are also more complex forms of

communication that involve a group of processors,

so called collective communication operations such

as broadcast, multicast, or reduction operations.

The cost model of a message passing

multicomputer consists of two parts. The

operations performed locally are treated as in a

RAM. Point to point non blocking communications

are modelled by the LogP model[14]. The latency

L specifies the time that a message of one word

needs to be transmitted from sender to receiver.

The overhead o specifies the time that the sending

processor is occupied in executing the send

command. The gap g gives the time that must pass

between two successive send operations of a

processor, and thus models the processor’s

bandwidth to the communication network. The

processor count P gives the number of processors

in the machine. The LogP model has been extended

to the LogGP model [5], by introducing another

parameter G that models the bandwidth for longer

messages.

Practical Relevance: Message passing models

such as CSP (communicating sequential processes)

have been used in the theory of concurrent and

distributed systems for many years. With the

definition of vendor independent message passing

libraries, message passing became the dominant

programming style on large parallel computers.

Implementations: Early vendor specific libraries

were replaced in the early 1990s by portable

message passing libraries such as PVM and MPI.

MPI was later extended in the MPI 2.0 standard

(1997) by one sided communication and fork join

style. MPI interfaces have been defined for Fortran,

C and C++. Open source implementation exists

such as OpenMPI.

2.4 Bulk Synchronous Parallelism

The bulk synchronous parallel (BSP) model,

proposed by Valiant in 1990 [48] and modified by

McColl [39], enforces a structuring of message

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

passing computations as a (dynamic) sequence of

barrier separated supersteps, where each superstep

consists of a computation phase operating on local

variables only, followed by a global interprocessor

communication phase. The cost model involves

only three parameters (number of processors p,

point to point network bandwidth g, and message

latency resp. barrier overhead L such that the worst

case (asymptotic) cost for a single superstep can be

estimated as w+hg+L), if the maximum local work

w per processor and the maximum communication

volume h per processor are known. The cost for a

program is then simply determined by summing up

the costs of all executed supersteps.

Practical Relevance: BSP model allows deriving

realistic predictions of execution time and can

thereby guide algorithmic design decisions and

balance trade-offs.

Implementations: The BSP model is mainly

realized in the form of libraries such as BSPlib [27]

or PUB [9] for an SPMD execution style.

2.5 Asynchronous Shared Memory and

Partitioned Global Address Space

In the shared memory model, several threads of

execution have access to a common memory, the

threads of execution run asynchronously.

A recent development is transactional

memory ([26],[2]), which adopts the transaction

concept known from database programming as a

primitive for parallel programming of shared

memory systems. A transaction is a sequential

code section enclosed in a statement such as

atomic {.....} that should either fail completely or

commit completely to shared memory as an

atomic operation

Practical Relevance: Shared memory

programming has become the dominant form of

programming for small scale parallel computers,

notably SMP systems. As large scale parallel

computers have started to consist of clusters of

SMP nodes, shared memory programming on the

SMPs also has been combined with message

passing concepts.

Implementations:Cilk [8], is a shared memory

parallel language for algorithmic multithreading.

OpenMP is gaining popularity with the

arrival of multicore processors and may

eventually replace Pthreads completely. OpenMP

provides structured parallelism in a combination

of SPMD and fork join styles.The Linda system

[10] provides a shared memory via the concept of

tuple spaces, which is much more abstract than

linear addressing, and partly resembles access to a

relational database.

2.6 Data Parallel Models

Data parallel models include SIMD (Single

Instruction, Multiple Data) and vector computing,

data parallel computing, systolic computing

cellular automata, VLIW computing, and stream

data processing.

Data parallel computing involves the

elementwise application of the same scalar

computation to several elements of one or several

operand vectors (which usually are arrays or parts

thereof), creating a result vector. All element

computations must be independent of each other,

and may therefore be executed in any order in

parallel, or in a pipelined way.

Practical Relevance: Vector computing was the

paradigm used by the early vector super computers

in the 1990s and 1980s and is still an essential part

of modern high performance computer

architectures. It is a special case of the SIMD

computing paradigm. Most modern high end

processors have vector units extending their

instruction set by SIMD/vector operations. VLIW

is today also a popular concept in high performance

processors for the digital signal processing (DSP)

domain.

Implementations: APL [28] is an early SIMD

programming language. Other SIMD languages

include Vector-C [37] and C* [43]. Fortran90

supports vector computing and even a simple form

of data parallelism. With the HPF [31] extensions,

it became a full-fledged data parallel language.

Other data parallel languages include ZPL [47]

NESL Dataparallel C and Modula-2* [42].

2.7 Task-Parallel Models and Task

Graphs

Many applications can be considered as a set of

tasks each task, solving part of the problem at hand.

Tasks may communicate with each other during

their existence, or may only accept inputs as a

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

prerequisite to their start, and send results to other

tasks only when they terminate. Tasks may spawn

other tasks in a fork-join style, and this may be

done even in a dynamic and data dependent

manner. Such collections of tasks may be

represented by a task graph, where nodes represent

tasks and arcs represent communication, i.e. data

dependencies.

Practical Relevance: Hardware software co-

design has gained some interest by the

integration of reconfigurable hardware with

microprocessors on single chips. Grid

computing has gained considerable attraction in the

last years, mainly driven by the enormous

computing power needed to solve grand challenge

problems in natural and life sciences.

Implementations: A prominent example for

parallel data flow computation was the MIT

Alewife machine with the ID functional

programming language [3].There are several grid

middlewares, most prominently Globus [22] and

Unicore [17], for which a multitude of schedulers

exists.

3. General Parallel Programming

Methodologies

In this section, the features, advantages and

drawbacks of several widely used approaches to

the design of parallel software has been reviewed.

Many of these actually start from an existing

sequential program for the same problem, which

is more restricted but of very high significance for

software industry that has to port a host of legacy

code to parallel platforms in these days, while other

approaches encourage a radically different parallel

program design from scratch.

3.1 Foster’s PCAM Method

Foster [21] suggests that the design of a parallel

program should start from an existing (possibly

sequential) algorithmic solution to a computational

problem by partitioning it into many small tasks

and identifying dependences between these that

may result in communication and synchronization,

for which suitable structures should be selected.

These first two design phases, partitioning and

communication, are for a model that puts no

restriction on the number of processors. The tasks

are agglomerated to macrotasks (processes) to

reduce internal communication and

synchronization relations within a macrotask to

local memory accesses. Finally, the macrotasks are

scheduled to physical processors to balance load

and further reduce communication.

3.2 Incremental Parallelization

For many scientific programs, almost all of their

execution time is spent in a fairly small part of the

code. Directive based parallel programming

languages such as HPF and OpenMP, which are

designed as a semantically consistent extension to

a sequential base language such as Fortran and C,

allow to start from sequential source code that can

be parallelized incrementally. Usually, the most

computationally intensive inner loops are

identified (e.g., by profiling) and parallelized first

by inserting some directives, e.g. for loop

parallelization.

3.4 Automatic Parallelization

Automatic parallelization of sequential legacy code

is of high importance to industry but difficult. It

occurs in two forms: static parallelization by a

smart compiler, and run time parallelization with

support by the language’s run time system or the

hardware.

3.5 Skeleton Based and Library-

Based Parallel Programming

Structured parallel programming, also known as

skeleton programming [12,41] restricts the many

ways of expressing parallelism to compositions of

only a few, predefined patterns, called skeletons.

Skeletons [12, 15] are generic, portable, and

reusable basic program building blocks for which

parallel implementations may be available. They

are typically derived from higher order functions as

known from functional programming languages. A

skeleton based parallel programming system like,

P3L [6, 41], SCL [15, 16], eSkel [11], MuesLi

[34], or QUAFF [18], usually provides a relatively

small, fixed set of skeletons. Each skeleton

represents a unique way of exploiting parallelism,

in a specifically organized type of computation

such as data parallelism, task farming, parallel

divide and conquer, or pipelining. While non-

nestable skeletons can be implemented by generic

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

library routines, nestable skeletons require, in

principle, a static preprocessing that unfolds the

skeleton hierarchy, e.g. by using C++ templates or

C preprocessor macros.

4. Conclusion

The review of parallel programming models

presented in this paper surfaces the current trends

and provide speculation about the future of parallel

programming models.

The future of computing is parallel computing,

dictated by physical and technical necessity.

Parallel computer architectures will be more and

more hybrid, combining hardware multithreading,

many cores, SIMD units, accelerators and on chip

communication systems, which require the

programmer and the compiler to solicit parallelism,

orchestrate computations and manage data locality

at several levels in order to achieve reasonable

performance for example the Cell BE processor.

Because of their relative simplicity, purely

sequential languages will remain for certain

applications that are not performance critical,

applications that are not performance critical such

as word processors. New software engineering

techniques such as aspect oriented and view based

programming and model driven development may

help in managing complexity.

From an industry perspective tools that allow

to more or less automatically port sequential legacy

software are of very high significance.

Deterministic and time predictable parallel models

are useful e.g. in the real time domain. Compilers

and tools technology must keep pace with the

introduction of new parallel language features.

Even the most advanced parallel programming

language is doomed to failure if its compilers are

premature at its market introduction and produce

poor code, as we could observe in the 1990s for

HPF in the high performance computing domain

[31], where HPC programmers instead switched to

the lower level MPI as their main programming

model.

5. References

1. Ferri Abolhassan, Reinhard Drefenstedt, Jorg Keller,

Wolfgang J. Paul, and Dieter Scheerer. On the physical

design of PRAMs. Computer J 36(8):756-762, 1993

December.

2. Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin

Saha. Unlocking concurrency: multicore programming
�with transactional memory. ACMQueue, (Dec. 2006/jan.

2007), 2006.

3. Anant Agarwal, Ricardo Bianchini, The MIT Alewife
machine: Architecture and performance. In Proc. 22nd Int.

Symp. Computer Architecture, pages 2-13, 1995.

4. A Aggarwal. A. K.Chandra, and M.Snir.Communication
complexity of PRAMs. Theoretical Computer Science,

71:3-28, 1990.

5. Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser,

and Chris Scheiman. LogGP: Incorporating long messages

into the LogP model for parallel computation. Journal of

Parallel and Distributed Computing, 44(1):71-79, 1997.

6. Bruno Bacci, Marco Danelutto, Salvatore Orlando,

Susanna Pelagatti, and Marco Vanneschi. P3L:A

structured high level programming language and its

structured support. Concurrency-Pract. Exp., 7(3):225-

225, 1995.

7. Henri E. Bal, Jennifer G. Steiner, and Andrew S.
Tanenbaum. Programming Languages for Distributed

Computing Systems. ACM Computing Surveys 21(3):261-

322, September1989.
8. Robert D. Blumofe, Christopher F. Joerg, Bradley C.

Kuszmaul. Cilk: an efficient multi-threaded run-time

system. In Proc. 5th ACM SIGPLAN Symp. Principles

and Practice of Parallel Programming, pages 207-216,

1995.

9. Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo

Rieping. The Paderborn University BSP (PUB) Library.

Parallel Computing, 29:187-207, 2003.

10. Nicholas Carriero and David Gelernter. Linda in context.

Commun. ACM, 32(4):444-458, 1989.

11. Murray Cole. Bringing skeletons out of the closet: A

pragmatic manifesto for skeletal parallel programming.
Parallel Computing, 30(3):389-406, 2004.

12. Murray I. Cole. Algorithmic Skeletons: Structured

Management of Parallel Computation. Pitman and MIT
Press, 1989.

13. Richard Cole and Ofer Zajicek. The APRAM:

Incorporating Asynchrony into the PRAM model. In Proc.

1st Annual ACM Symp. Parallel Algorithms and

Architectures, pages 169-178, 1989.
14. David E. Culler, Richard M. Karp, David A. Patterson,

Abhijit Sahay, Klaus E. Schause. LogP: Towards a

realistic model of parallel computation. In Principles &

Practice of Parallel Programming pages 1-12, 1993.

15. J. Darlington, A. J. Field, P. G. Harrison. Parallel

Programming Using Skeleton Functions. In Proc. Conf.

Parallel Architectures and Languages Europe, pages 146-

160. Springer LNCS 694, 1993.

16. J. Darlington, Y. Guo, H. W. To, and J. Yang. Parallel
skeletons for structured composition. In Proc.5th ACM

SIGPLAN Symp. Principles and Practice of Parallel

Programming. ACM Press, July 1995. SIGPLAN Notices
38(3), pp. 19-28.

17. Dietmar W. Erwin and David F. Snelling. Unicore: A grid

computing environment. In Proc. 7th Int.l Conference on
Parallel Processing (Euro Par), pages 825-834, London,

UK, 2001. Springer-Verlag.

18. Joel Falcou and Jocelyn Serot. Formal semantics applied

to the implementation of a skeleton based parallel

ISSN (Online) : 2348 - 2001

International Refereed Journal of Reviews and Research

Volume 4 Issue 1 January-February 2016

International Manuscript ID : 23482001V4I101022016-19

(Approved and Registered with Govt. of India)

programming library. In Proc. ParCo-2007. IOS press,

2008.

19. Martti Forsell. A scalable high performance computing

solution for networks on chips. IEEE Micro, pages 46-55,

September 2002.
20. S. Fortune and J. Wyllie Parallelism in random access

machines. In Proc. 10th Annual ACM Symp. Theory of

Computing, pages 114-118, 1978.
21. Ian Foster. Designing and Building Parallel Programs.

Addison Wesley, 1995.

22. Ian Foster. Globus toolkit version 4: Software for service

oriented systems. In Proc. IFIP Int.l Conf. Network and

Parallel Computing, LNCS 3779, pages 2-13, Springer,

2006.

23. Phillip B. Gibbons, A. More Practical PRAM Model. In

Proc. 1st Annual ACM Symp. Parallel Algorithms and

Architectures, pages 158-168, 1989.

24. W. K. Giloi. Parallel Programming Models and Their

Interdependence with Parallel Architectures. In Proc. 1st

Int. Conf. Massively Parallel Programming Models. IEEE
Computer Society Press, 1993.

25. Allan Gottlieb. An overview of the NYU ultracomputer

project. In J. J. Dongarra, editor, Experimental Parallel
Computing Architectures, pages 25-95. Elsevier Science

Publishers, 1987.

26. Maurice Herlihy and J. Eliot B. Moss. Transactional

memory Architectural support for lock free data structures.

In Proc. Int. Symp. Computer Architecture, 1993.

27. Jonathan M. D. Hill, Bill McColl. BSPlib: the BSP

Programming Library. Parallel Computing, 24(14): 1947-

1980, 1998.

28. Kenneth E. Iverson. A Programming Language. Wiley,

New York, 1962.

29. Joseph JaJa. An Introduction to Parallel Algorithms.

Addison Wesley, 1992.
30. Jorg Keller, Christoph Kessler, and Jesper Traff. Practical

PRAM Programming. Wiley, New York, 2001.

31. Ken Kennedy, Charles Koelbel, and Hans Zima. The rise
and fall of High Performance Fortran: an historical object

lesson. In Proc. Int. Symposium on the History of

Programming Languages (HOPL III) June, 2007.

32. Christoph W. Kessler. A practical access to the theory of

parallel algorithms. In Proc. ACM SIGCSE’04
Symposium on Computer Science Education, March 2004.

33. Christoph W. KeBler and Helmut Seidl. The Fork95

Parallel Programming Language: Design, Implementation,

Application. Int. J. Parallel Programming, 24(1):17-50,

February 1997.

34. Herbert Kuchen, A skeleton library. In. Proc. Euro Par’02,

pages 620-629, 2002.

35. Christian Lengauer. A personal, historical perspective of

parallel programming for high performance. In Gunter
Hommel, editor, Communication Based Systems (CBS

2000), pages 111-118, Kluwer, 2000.

36. Claudia Leopold. Parallel and Distributed Computing. A
survey of models, paradigms and approaches. Wiley, New

York, 2000.

37. K. C. Li and H. Schwetman. Vector C: A Vector
Processing Language. J. Parallel and Distrib. Comput.,

2:132-169, 1985.

38. B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models

of Parallel Computation: a Survey and Synthesis. In Proc.

28th Annual Hawaii Int. Conf. System Sciences, volume

2, pages 61-70, January 1995.

39. W. F. McColl. General Purpose Parallel Computing. In A.

M. Gibbons and P. Spirakis, editors, Lectures on Parallel

Computation. Proc. 1991 ALCOM Spring School on
Parallel Computation, pages 337-391. Cambridge

University Press. 1993.

40. Wolfgang J. Paul, Peter Bach, Michael Bosch.Real PRAM
programming. In Proc. Int. Euro Par Conf.’02, August

2002.

41. Susanna Pelagatti. Structured Development of Parallel

Programs. Taylor Francis, 1998.

42. Michael Philippsen and Walter F. Tichy Modula and its

Compilation. In Proc. 1st Int. Conf. of the Austrian Center

for Parallel Computation, pages 169-183. Springer LNCS

591, 1991.

43. J. Rose and G. Steele. C*: an Extended C Language for

Data Parallel Programming. Technical Report PL87-5,

Thinking Machines Inc., Cambridge, MA, 1987.

44. D. B. Skillicorn. Models for Practical Parallel
Computation. Int. J. Parallel Programming, 20(2):133-138,

1991.

45. David B. Skillicorn and Domenico Talia, editors.
Programming Languages for Parallel Processing. IEEE

Computer Society Press, 1995.

46. David B. Skillicorn and Domenico Talia. Models and

Languages for Parallel Computation. ACM Computing

Surveys, June 1998.

47. Lawrence Snyder. The design and development of ZP.L In

Proc. ACM SIGPLAN Third symposium on history of

programming languages (HOPL III). ACM Press, June

2007.

48. Leslie G. Valiant. A Bridging Model for Parallel

Computation. Comm. ACM, 33(8):103-111, August 1990.

49. Xingzhi Wen and Uzi Vishkin. Pram-on-chip: first
commitment to silicon. In SPAA ’07: Proceedings of the

nineteenth annual ACM symposium on Parallel algorithms

and architectures, pages 301-302, New York, NY, USA,
2007. ACM.

